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1. Introduction 

The study of electroweak symmetry breaking is a major reason for building new 

high energy hadron colliders. At present, not much is known about the mechanism 

of symmetry breaking, except for the fact that the W and 2 bosons have mass, 

or longitudinal degrees of freedom. This leads one to expect that longitudinally- 

polarized gauge bosons will provide an important probe of this new physics. 

Over the past few years, the theory of electroweak symmetry breaking has 

received much attention. The case that has been studied most is, of course, the 

standard model with an elementary Higgs boson [I]. If the Higgs boson is light, 

standard perturbative calculations give a reliable indication of its prospects for 

discovery. If it is heavier than about 800 GeV, however, the symmetry-breaking 

sector is strongly coupled and naive perturbation theory breaks down [2-41. 

The problem with a strongly-interacting symmetry-breaking sector is that one 

cannot make firm predictions. For example, the strong dynamics might give rise to 

a resonance, with the same quantum numbers as the standard-model Higgs boson, 

whose properties are not simply related to the parameters of the standard model 

[3,5]. Alternatively, the symmetry-breaking sector might not be at all like the 

standard model, and many possibilities have been suggested. Typically, these t,he- 

ories give rise to a rich spectrum of resonances in the TeV region, as in technicolor 

models [G]. 

On general grounds, one knows that some of the resonances associaded with 

electroweak symmetry breaking must couple to the V,V, final state.’ If the res- 

onances are light enough to be produced a,t the SSC or LHC, their discovery 

prospects depend on their widths. For example, the relatively narrow tech&rho 

should be easy to see [7]. In contrast, a heavy Higgs is so broad that it is difficult 

to isolate the signal from the background [l]. 

Of course, it is also possible for the new resonances to be too heavy to be 

produced at the SSC or LHC. In this case one would expect an enhancement in 

1 We generically delrote the longitudinal 1Y and 2 I>OSOIIS hy V, 
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the yield of r/,V, pairs. Such sn enhancement would signal the onset of a new 

strongly-interacting symmetry-breaking sector [8], with new resonances that lie 

out of reach [9,10]. 

It is this second scenario that we will study in this paper. We will use the 

formalism of effective field theory to describe the symmetry breaking, and take the 

effective Lagrangian to contain all the fields of the standard model except the Higgs 

boson. We will assume that the resulting theory has an effective SU(2) x SU(2) 

chiral symmetry, and replace the Higgs by an infinite set of non-renormalizable 

operators whose coefficients parametrize the low-energy effects of the electroweak 

symmetry breaking [11,12]. In unitary gauge, these operators reduce to anomalous 

couplings of the standard-model gauge bosons. 

The formalism of effective Lagrangians provides a well-defined computational 

framework for investigating the physics of anomalous couplings and electroweak 

symmetry breaking. The infinite set of terms in the effective Lagrangian can be 

organized in an energy expansion. At low energies, only a finite number of terms 

contribute to any given process. At higher energies, more and more terms be- 

come important, until the whole process breaks down at the scale of the symmetry 

breaking [13]. A similar procedure gives an acceptable description of K= scatter- 

ing amplitudes up to energies of about 500 MeV [14], so we expect the effective 

Lagrangian for r/,1’, scattering to be reasona,ble up to the TeV scale. 

Thus, in t,his paper we shall study the sensitivity of the SSC and LHC to new 

physics beyond the standard model. We will assume that all new resonances lie out 

of reach, and that the physics of electroweak symmetry breaking is described by a 

model-independent low-energy effective Lagrangian. We will use this Lagrangian to 

carry out a complete, order p4, calculation of VLVL pair production in pp colliders, 

for invariant masses up to of order 1.0 TeV. Our results extend previous studies 

by including all initial states and all next-to-leading corrections to the processes of 

interest [15-171. 

Throughout this paper we will use the electroweak equivalence theorem to aid 
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our analysis [lS]. We will work in Landau gauge: and calculate our amplitudes 

to leading order in 114&/s. To any order in the loop expansion, this amounts to 

keeping only those terms of “enhanced electroweak strength” [19]. Therefore our 

amplitudes are valid for the SSC and LHC, but not for lower-energy machines. 

We shall simplify our calculations by assuming factorization of the production, 

scattering and decay of the VLVL pairs. For initialstates with vector bosons, we will 

use the effective W approximation to compute the luminosities of the transverse 

and longitudinal polarizations. We then fold these luminosities with the scattering 

sub-processes to find the pp cross sections [20]. 

In what follows we will assume that all of the new physics associated with 

electroweak symmetry breaking is contained in the vector boson self-couplings. In 

particular, we shall take the couplings of the fermions to be the same as in the 

standard model, we will ignore the possibility of extra pseudo-Goldstone bosons 

[21]. We will not discuss the detection issues that go into analyzing the decay of the 

longitudinal vector bosons, nor will we try to define or study realistic experimental 

signatures. 

2. Effective Lagrangians 

2.1 GLOBAL SYMMETRIES 

In this paper we will assume that the effective Lagrangian for electroweak sym- 

metry breaking is determined by new physics outside the reach of the SSC or LHC. 

Since we do not know the full theory, we must build the effective Lagrangian out 

of all operators consistent with the unbroken symmetries. In part.icular, we must 

include operators of all dimensions, whether or not they are renormalizable. In this 

way we construct the most general effective Lagrangian that describes electroweak 

symmetry breaking. 

2 In this gauge, the would-he Goldstone hosons are ~nassless and decouple front the ghost. 
sector. 
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To specify the effective Lagrangian, we must first fix the pattern of symmetry 

breaking. 111 the standard model, the gauge group is SU(Z)L x U(l)y, sponta- 

neously broken to the U(1) of electromagnetism. The minimal global symmetry 

consistent with this gauge group is G = SU(2) x U(l), spontaneously broken to 

H = U(1). Of course, the global symmetry group can also be larger. For example, 

it could be G = SU(2) x SU(2), broken to H = SU(2), as in the minimal standard 

model. In this case, there is a “custodial” SU(2) symmetry which ensures that 

p = 1, up to radiative corrections3 Experimentally, we know that p 2: I, so we 

will adopt the second group, and assume that the custodial SU(2) symmetry4 is 

broken only by terms that vanish as the hypercharge coupling5 g’ + 0. 

Let us start by constructing the effective Lagrangian associated with breaking 

SU(2) x SU(2) + SU(2). We introduce the would-be Goldstone boson fields UJ+, 

w- and z, as well as the gauge fields Wi and B, through the matrices 

iwiTi 
C E exp - 

( > v 

1 
B,,, = z 

(2.1) 

where the ? are Pauli matrices, normalized so that Tr(r’.j) = 26’j. The derivative 

D,C = 8,C + ;gW,,C - ;g’B,,?lr3 (2.2) 

3 In analogy with QCD, we call the unbroken SU(?) “isospin.” 
4 Note that this is a very strong assumption. The constraint p E 1 affects only one term in 

the full effective Lagrangian. 
5 The custodial SU(2) symmetry is also broken by the mass splittings in the fermion doublets. 

We shall ignore this symmetry breaking in what follows. 
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transforms covariantly under global SU(2) x SU(2) transformations, 

C + LCR+, (2.3) 

and g and g’ are the coupling constants of the gauged sum and U(l)y respec- 

tively. 

The lowest-order term in the effective Lagrangian contains two derivatives, 

d*’ = $rD~~+DJ . 

The couplings of the would-be Goldstone bosons to the Sum x U(l)y gauge 

fields are fixed by the covariant derivative. To this order, the effective Lagrangian 

is unique. The full Lagrangian is the sum of the lowest-order effective Lagrangian, 

together with the usual gauge-boson kinetic energy, gauge-fixing and Fadeev-Popov 

terms. 

The next-to-leading order terms in the effective Lagrangian contain six free 

parameters:6 

l(4) = & [Tk (D~C+D/J)]* + &Tr (D,.E+D,E)Tr (DtlPtDYX) 

L9L - Tr 
- 2g1G7r* ( 

W”“D,,ED,,C+ 
> 

,LSR - Tr 
- zg 1679 ( 

BJ‘YD,,S+D,X 
> 

+ gg’$Tr CB”YX+Wp, 
> 

+ i&v* [n (T33tD,Z)]z 

(2.5) 

To this order, these are the only terms when G = SU(2) x SU(2), broken only by 

the hypercharge coupling g’. One can think of other terms, such as Tr (D2S+D2E), 

G We have normalized the coefficients as in Ref. 17, so they are “naturally” U(1). Note t,hat 
we hwe included one term that is formally of order pz. This term is induced at one loop 
by hypercharge gauge-boson exchange. Therefore Ap is proportional to g’2/1G1rz, and the 
term can be considered to be of order pd. 
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but t,hey can all be absorbed in Eq. (2.5) by using the lowest-order equations of 

motion, XD*d = (D*C)Ct. Therefore we construct our O(p4) amplitudes by 

using Eq. (2.4) at the tree and one-loop levels, and Eq. (2.5) at tree level only. 

2.2 RENORMALIZATION SCHEME 

As usual with effective Lagrangians, we renormalize our amplitudes using a 

mass-independent renormalization scheme. To order p4, the infinities that appear 

at one loop can all be absorbed by defining renormalized parameters L:(p). There- 

fore we use dimensional regularization and adopt the following renormalization 

scheme: 

-&bL) = L9R+ & 

where 

1 
: 

= & - y + log(47r) - log($) 

(2.6) 

(2.7) 

These definitions remove extraneous constants t,hat can be absorbed into redefini- 

tions of the L:(p) in our amplitudes. 

As mentioned earlier, we work to lowest order in the electroweak couplings, 

and compute the leading corrections of enhanced electroweak st,rength. Effectively 

this means that when we compute one-loop diagrams, we allow only would-be 

Goldstone bosons in the loops. This implies that we do not need to renormalize 

the usual gauge-boson sector of the theory. 
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To one-loop order, the Ap term in the effective Lagrangian is renormalized by 

diagrams with a hypercharge gauge boson in the loop. It is not renormalized at all 

if we only consider the terms of enhanced electroweak strength: Therefore, we do 

not need to specify a renormalization for the coefficient Ap. 

For studies at energies on the order of the W mass, it is not possible to separate 

the terms into those of electroweak and enhanced electroweak strength. One must 

calculate beyond leading order in g or g’, and introduce a renormalization scheme 

for the usual gauge sector of the electroweak interactions. One also needs an 

additional counterterm for Ap. 

All these complications become necessary in studies for lower energy machines, 

such as LEP2 and the Tevatron. We are able to avoid these issues because we 

concentrate on a kinematic regime where the only relevant terms are those of 

enhanced electroweak strength. 

2.3 PRESENT CONSTRAINTS 

We can gain some insight into the constraints on our SU(2) x SU(2) effective 

Lagrangian by reducing it to unitary gauge, with C = 1. In this gauge the new 

physics appears in the form of anomalous gauge-boson couplings. 

Let us first consider the term with Liu, which reduces to 

~,,LV~-&ow~ - ig(W;tW,- - iv,-rv,+, (2.8) 1 
This term contains a three-gauge-boson coupling, as well as an “oblique” correction 

to the gauge-boson self-energies [22]. This correction is related to the S parameter 

that occurs in electroweak radiative corrections for Z-physics, .&(Mz) = -nS 

[23,24]. A recent best fit to the data gives Lou = 0.0 f 1.6 [25], which we 

translate into 

Lie(p) = 0.5 f 1.6, 

for ;l = 1.5 TeV. 

7 Recall that we aSunIt! H = sup). 



The terms with La contain anomalous three- and four-gauge-boson couplings. 

The standard notation for anomalous three-gauge-boson couplings is given by 

[26,27,28] 

- ieKY w,‘w;/v’Y - iecot@nZ w;w;zI’” , (2.9) 

where [17,28] 

“Z - 1 N q -1 ss AK 1~ D(g’+$) 

An analysis by Kane, Vidal and Yuan [29] finds that the SSC will be sensitive to 

values of ]AK] X 0.15, which we translate to ]L,$,,,(p)] X 25, for p N 1.5 TeV.’ 

This is compatible with the results of Falk, Luke and Simmons [17], who studied 

pp -+ W*Z and pp -+ W*y and found that the SSC will not be sensitive to the 

values 

-16 S L;,(p) 5 7 

-119 ;s I&(~) zz 113) 
(2.11) 

evaluated at 11 N 1.5 TeV. The present bounds are of order [30] 

-2.2 <_ K., - 1 5 2.6 , (2.12) 

although the Tevatron is expected to reach a sensitivity of about 1.3 for ]K~ - I] 

[33]. This is similar to the expected sensitivity of LEP2 [26,29,31,32]. 

The terms with Lr and L2 give rise to anomalous four-gauge-boson couplings. 

These couplings are not constrained by experiment. They are limited, however, by 

perturbative unitarity. As we will see in the following sections, Lr(l.6) and L;(p) 

contribute to the VLVL + VLVL scattering amplitudes. These amplitudes grow 

with energy, which allows us to place “unitarity bounds” on the parameters. The 

procedure is simple: one first computes the partial wave amplitudes eg, ui, o:, ei 

and a; to one loop, and then demands that they do not violate the elastic partial 

8 We interpret the results of Refs. 17 and 29 in terms of running couplings evaluated at 
,I N 1.5 TeV. 
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wave unitarity condition ]&(a:)] 5 l/2 below Afvv = 1.0 TeV (or MVV = 1.5 

TeV). This gives the “allowed” regions shown in Fig. 1. By considering inelastic 

unitarity constraints on the qij + VLVL amplitudes, one can perform a similar 

exercise to bound LE(p) and Lb,(p) It turns out, however, that this does not 

significantly constrain LiL,R(p). 

The final term in (2.5) is proportional to Ap. By power counting, we assign a 

factor of g’2/16r2 to this coupling: 

Li2 Ap = g’* 16a2 (2.13) 

Combining LEP data and low energy data from deep inelastic scattering and parity 

violation in Cesium, Altarelli [25] finds Ap = 0.0016 f 0.0032, which gives Liz N 

2.0 f 4.0. We shall set Ap = 0 in what follows. 

With these counting rules, all other terms in Ref. 12 with four derivatives 

are actually of order p6. In particular, this includes a term recently discussed by 

Holdom [34], 

KTr Q+D,D,C Tr r3(D,D,C+)C 
( > ( > 

(2.14) 

This term is related to the observable C’ that has been used in the study of elec- 

troweak radiative corrections. Other a,nomalous three-gauge-boson couplings con 

sidered in the literature include 10 

These couplings are of order p6 and are suppressed within the framework of our 

discussion. 

9 As mentioned before, this term arises at ooe loop from hypercbarge gauge-boson esclmoge. 
It is not renormalized by loops containing only would-be Goldstone bosoms. Since me are 
only computing the corrections of enhanced electroweak strength, any “bare” value of Liz 
is not renormalized, and Lcz is independent of ~1. 

10 Note that power counting indicates that these terms should not be suppressed by M&, but 
by A* S lG?r%*. 
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2.4 TYPICAL COEFFICIENTS 

In order to understand the bounds on the coefficients L:(p), it is instructive 

to estimate the size of the coefficients in typical theories. Using the effective La- 

grangian approach, this can be done in a consistent way. We first consider a 

model with three would-be Goldstone bosons, interacting with a scalar, isoscalar 

resonance like the Higgs boson. We assume that the L:(p) are dominated by tree- 

level exchange of the scalar bosom If one integrates out the scalar, and matches 

coefficients at the scale MH, one finds [12,13,35]: 

1 
(2.16) 

where r~ is t,he width of the scalar into Goldstone bosons. If we naively take 

(2.17) 

as in the standard model, we find t,he values quoted in Table 1, assuming p = 1.5 

TeV. 

Let us now consider a second model for the L:(p), and assmne that the coef- 

ficients are dominated by tree-level exchange of a rho-like particle with spin and 

isospin one. Integrating out the rho, and matching coefficients at the scale M,,, 

11 



Table 1 

Coefficients induced by a scalar, isoscalar particle like the Higgs, 

with fi = 1.5 TeV. 

M,y (TeV) Li(P) L;(P) J%(P) LiO(P) 

2.0 0.33 0.01 0.01 -0.01 

1.5 0.55 0.00 0.00 0.00 

one finds: 11 

L;L(p) = L;R(~) = 

where the constant f is related to the width rp, 

(2.18) 

1 f2M3 rp = -- 
48r v4 p ’ 

(2.19) 

and Fp is defined by: 

(OIV;lp”(p)) = ~‘“E,F~M~ (2.20) 

To estimate these parameters, we will model the resonance by a techn-rho whose 

properties are fixed by the ordinary QCD rho. Using large-N scaling arguments 

11 See the second paper of Ref. 13. The contribution to Ap is computed in Ref. 36. Related 
issues are discussed in Ref. 37. 



Table 2 

Coefficients induced by a vector, isovector particle like the techni-rho, 

with p = 1.5 TeV. 

Mp (TeV) L?(P) L;(P) Lb(P) Lie(P) I 

2.0 -0.31 0.38 1.4 -1.5 I 

1.5 -0.60 0.60 2.4 -2.5 I 

for the mass and width of the resonance, we find the values quoted in Table 2, for 

p = 1.5 TeV. 

In either case, the L:(p) are numbers of order one, which implies that AK N 

U(g2/16?r2). Values much larger than these are associated with light resonances 

(or other light particles not present in the minimal standard model), in which case 

chiral perturbation theory breaks down at a very low energy. Since one would 

presumably see the new particles directly, it does not make sense to take the L:(p) 

much larger than one. 

3. Vector Boson Fusion 

In this section we will consider the production of longitudinal vector bosons by 

the process of vector boson fusion. Previous studies have examined the case with 

two longitudinal vector bosons in the initial state. At high energies, this process 

dominates the scattering of vector bosom with two transverse (or one transverse 

and one longitudinal) polarizations. 

This is illustrated in Figs. 2 and 3, where we show the counting rules that 

isolate the terms of enhanced electroweak strength. The counting rules indicate 

that the most important diagrams are those with longitudinal polarizations in the 

external states. They also imply t,hat the most important radiative corrections 
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come from diagrams with Goldstone bosons in the r2 loops. These are the radiative 

corrections of enhanced electroweak strength, as in standard model calculations 

WJI. 
This power counting is completely correct for final states, so we will restrict 

our attention to final states of purely longitudinal polarization. For initial states, 

however, the power counting is too naive: it ignores the fact that the luminosity 

of transverse pairs is much larger than that of longitudinal pairs [39]. The large 

transverse luminosity can compensate for the relatively smaller subprocess cross 

sections. Therefore we shall study all production mechanisms, including those with 

transverse vector bosons in the initial state. 

3.1 TENSOR STRUCTURE 

We begin by decomposing the amplitude into five different tensor forms that 

contain “transverse,” “longitudinal,” and “mixed” polarization pieces. We ignore 

the possibility of epsilon tensors because they do not appear at the order to which 

we are working. Therefore we write: 

M = ~p,(~d4q~)M,w 

M,,” = T,v + L,, + &a, , 

where we adopt the notation 

(3.1) 

v,(~l)w~2) + W(PMP’) (3.2) 

In the final state, we invoke the equivalence theorem and denote the longitudinal 

vector particles by their corresponding would-be Goldstone l3 bosons. For charged 

particles, we take qr = qf and p = pf. 

12 One might think that contributions from the heavy top quark would play an important 
role because they are et&tnced by factors of M,?fM~,. In Ref. 38 it was S~IOWI~ that these 
contributions are small for t,he expected values of the top quark mass. They could be 
important, however, for a heavy fourth generation of feermions. 

13 Note that M(V,V, + w) = -M(V,v, - V,V,). 
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In Eq. (3.1), Z’,, denotes the tensor for transverse gauge bosons. It satisfies 

the conditions 

T,, & = 0 and T,, q; = 0 , (3.3) 

and contains two form factors 

T ALY = Ts(s,t, u) - ;g,v + qwav 
> 

(3.4) 

+ Td(s, t, u) G&w + uP,lqlY + SP,Pv + tqz,,pv 
> 

When the initial or final states contain identical particles, Bose symmetry requires 

that 

T,(s,t,u) = Ts(s,u,t) 
(3.5) 

Td(S,t,u) = Td(S,%t) 

Note that gauge invariance implies that amplitudes involving two photons must 

reduce to this form. Eq. (3.4) is also, of course, the form that is found for t,he 

99 -+ VLVL amplitudes in the gluon fusion process. 

In E,q. (3.1), LI,, denotes the part of the amplitude that describes t,he purely 

longitudinal polarizations. In particular, this amplitude must vanish when con- 

tracted with a transverse polarization vector, which implies 

L pv = Tl(s,t,u)qlvqzp 

Then the ~/,VL -+ VLVL amplitudes are given by 

2 
- 

4Mv* Ii& 
Tl(s,t,u) 

(3.6) 

We have checked our results by comparing with the amplitudes computed directly 

from the equivalence t,heorem. 
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The remaining t,ensor structure corresponds to states of mixed polarization. 

with one transverse and one longitudinal vector boson. There are two form factors 

for this part of the amplitude: 

s,, = Tml(s, 6 u) ( mppv + pm, - qzpqlv > 

+ Tmz(s,t, u) ta,ipv - w,aqlo > 

(3.8) 

As above, we have checked our results by contracting with one longitudinal po- 

larization vector and comparing with the results obtained from the equivalence 

theorem. 

3.2 INDEPENDENT AMPLITUDES 

Since our chiral Lagrangian preserves an approximate SU(2) symmetry, we can 

use isospin arguments to reduce the number of independent form factors. In this 

section we work in the (W3, B) basis because it simplifies the isospin properties of 

the vector bosons. 

For amplitudes involving two W’s in the initial state, all the particles are isospin 

triplets, The reaction is then characterized by four isovector indices i j + I; 1. 

Ignoring the tensor structure (but remembering that interchanges of s,t, u also 

imply interchanges of momenta and Lorentz indices), we write: 

121ijkf(s, t.) = .A(+ t, u) sijP + qs, t, u) @bjr + cys, ku) bifsjk (3.9) 

Since the particles in the initial and final states are typically not the same, we 

can only use t ++ 11, crossing to simplify this expression. We find 

A(s,t,u) =A(s,u,t) 

C(s,t,u) = B(s,cl,t) ( 
(3.10) 
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which implies: 

lwijkl(s, t. u) = .qs, t, u)6ij6k:r + qs, t, u)6ik6j’ + qs, u, t)6”@ (3.11) 

We see that there are two independent functions for amplitudes involving only 

the W bosons. They are: 

M(W+W- + zt) = A(s, t, u) 

M(W+W3 -+ WfZ) = B(s, t, u) 

The other IV amplitudes can then be reconstructed from the relations, 

M(W3W3 - w+w-) = A(s, t, u) 

hqw-1v3 --+ w-z) = B(s, t, u) 

M(W+W- + w+w-) = A(s,t,u) + B(s,t,u) 

M(W*W* + tu*zo*) = B(s,t,u) + B(s,u,t) 

M(W3W3 + zz) = A(s,t,u) + B(s,t,u) + B(s,u,t) 

(3.12) 

(3.13) 

Note that for purely longitudinal scattering, s - t crossing implies B(s, t, U) = 

.qt, s, IL). 

The amplitudes involving two hypercharge bosons are a-priori independent. 

From our Lagrangian, it is not hard to see that 

M(BB -+ z;) = 
0 

i 2M(w3w3 --+ ZZ) 
(3.14) 

M(BB -+ 7dUfW) = 
0 

g 2M(w3w3 -+ w+m-) 

The amplitudes involving one W and one B cannot be simplified with isospin 

arguments and we must compute them explicitly. 

In the appendix, we present explicit results for the independent scattering 

amplitudes. The physical amplitudes can be reconstructed using the relationships 

of this and the previous section. 
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4. Quark Anti-quark Annihilation 

Light qij annihilation is the most important mechanism for vector boson pair 

production in hadronic colliders [41,42]. This process tends to produce transversely- 

polarized vector bosons and has been typically considered as a background to new 

physics. In traditional studies of a heavy standard-model Higgs boson, one tries 

to suppress this mechanism with appropriate cuts [43]. 

Quark anti-quark annihilation also produces a smaller number of longitudinal 

vector boson pairs in an I = 1 state (to the extent that quark masses can be 

ignored). This production mechanism must be considered when searching for new 

physics with isotriplet resonances like the techni-rho [28,44]. 

For our calculation we assume standard couplings of the gauge bosons to the 

light fermions. Nonetheless, the next-to-leading terms in the chiral Lagrangian 

(2.5) affect t,he production of VLVL pairs through q?j annihilation. This has been 

discussed in Refs. 15 and 17. In Ref. 15 an estimate of the rescattering of the VLVL 

pair was made by considering its absorptive part. Since the VLVL pair is produced 

in an I = 1 state, the rescattering is sensitive to Lf,2(p) through the I = 1, J = 1 

partial wave. This effect is O(pG) in the energy expansion. 

At order p”, qij annihilation is sensitive to the parameters L;, &), a.5 dis- 

cussed 
14 

m Ref. 17. Our calculations differ from those of Ref. 17 in two ways. 

First, the authors of Ref. 17 did not include loop effects, which enter the ampli- 

tude at the same order as the L:L,x(p). Second, we did not. compute any O(y’) 

contributions, which are suppressed by M&/s with respect to the leading terms. 

In our calculations, we include the full set of O(p4) terms. These contributions 

are of enhanced electroweak strength; t,hey dominate the scattering amplitudes at 

high energies. 

We obtain the t,erms of enhanced electroweak strength from the diagrams de- 

picted schematiczdly in Fig. 4. If we define form factors for the yzu%- and ZW+W- 

14 It is also sensitive to L;,(p), hnt not through terms of enl~ar~ccd electroweak st~rength 
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vertices by 

4~ - w+w-)~ = - e(p+ - P-),J~(s) 

A(Z -+ w+w-)~, = - 2co&(P+ -P-b cos(2hv)fz(s) , 
(4.1) 

we find the following one-loop result in Landau gauge: 

1 
(4.2) 

f.z(s) = fr(s) + cos(;~w) &(L;Lb) - L;R(pL)) 1 
In the helicity basis, the amplitude for q(k+, X)q(k-, A’) -+ w+(p)w-(p’) can 

be written as 

Axx, = Cxxt sin0 , (4.3) 

where 6’ is the angle between z+ and p’ in the qq center of mass frame. Using 

Eq. (4.2), and assuming that the couplings of the gauge bosons to the light quarks 

are the same as in the standard model, we find 

c+- = g2 sin2(0,)Qufr(s) 
[ 

- Sin2’~cb~~~4~~‘Qqfz(s)] 

(4.4) 

C-+ = - g2 
[ 
sin2(8,)Qqf7(s) (sin2(bv)Qq - 7’3) cosP9w) - 

2cos7f3w) fz(s)] > 

bo one-loop order, with T3 = &l/2. In a similar way, for u(b+,X)$k-,A’) + 

w+(p)z(p’), we find 

AiF = - g”;$y{l-&(log(-;) -12L;&))}, (4.5) 

where I;, is the Kobayash-Masltawa mixing augle. Note that the amplit,ude for 

qq --t zz vanishes in the limit of massless quarks. 
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5. Numerical Results 

In this section we present the complete cross section for the process pp -9 

VLVL, to order p4 in SU(2) x SU(2) chiral perturbation theory. We include the 

contributions from all production mechanisms: @j annihilation, vector boson fusion 

and gluon fusion through a top-quark loop [21]. Our results contain all terms of 

enhanced electroweak strength, and are correct to order p4 in chiral perturbation 

theory. 

For initial states with quarks and antiquarks, we find the hadronic cross sections 

in the usual way, by convoluting the subprocess cross sections with the EHLQ [41] 

structure functions (set l), evaluated at Q2 = s, where s is the squared center of 

mass energy for the scattering subprocess. For initial states with vector bosons, 

we use the effective W approximation t,o find effective luminosities for the initial 

particles. We evaluate the EHLQ structure functions at Q2 = A4&, which has 

been shown to be a reasonable approximation for the standard-model Higgs [45]. 

We then compute the full pp cross sections by folding these luminosities with the 

subprocess cross sections, 

2Mvv dL 
--) VLVL) = -- 

s dr ppplvv 
Wf$v) (5.1) 

In this way we find the phenomenological cross sections for VLVL production at 

hadronic colliders. It is important to note, however, that in the MJ+MJ-. ZZ, and 

lY*Z channels, the longitudinal final states are dominated by configurations with 

transverse polarizations. The transverse background must be suppressed if we are 

t,o have any hope of observing the new physics associated with the longitudinal 

final statesI [43,45-481. 

There are several ways this can be done. One possibilit,y is to separate the 

longitudinally-polarized gauge bosons from transverse background, as has been 

15 As discussed above, new physics also affects the transverse states. The effects are small, 
however. because t,he krms we not of enhanced electroweak strengt.h. 
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studied in Ref. [46]. A second proposal is to use forward jet tagging to eliminate the 

states produced by QT annhilation and gluon fusion [43,47,48]. A third suggestion 

is to study the W*W* channel because it receives no contribution from the qq or 

99 initial states [45,48]. 

In Figs. 5 - 8, we show the cross sections for pp -+ VLI/L, using our O(p4) 

amplitudes with L:(p) = 0, for p = 1.5 TeV. The figures include all production 

mechanisms, and describe a universal background that is always present in theories 

with no light resonances. From the figures we see that q?j annihilation provides the 

l6 most important contribution to the W,‘WF and ll’:Z~ final states. The IiJ,‘LV; 

and ZLZL final states also receive contributions from gluon fusion through loops 

of heavy quarks. The figures indicate that the contribution to ZLZL is of the same 

order as that from vector boson fusion. We have not illustrated the W,‘L+‘; rate 

here; a complete calculation for the standard model shows that it is significantly 

smaller than the contribution from q? annihilation [49]. 

In Figs. 5 - 8, we also show the contributions from all polarizations of vector 

boson fusion, VLVL * VLVL, VLVT -+ VLVL, and VT& --t VLVL (where bhe two 

transverse polarizations are summed). At low energy, we have 

cJ(V,V, -+ VLVL) > “(VTVL -+ VLVL) > u(V,V, i VLV,) ( (5.2) 

which is entirely due to the magnitudes of the vector boson luminosities. We see 

that at .Mvr~ N 400 GeV, the transversely-polarized vector bosom increase the 

rate by a factor of about two; above this energy they become less important. At 

high energy, we have 

U(VTVL + VLV,) N $ 

U(VTVT + VLVL) = ; > 

(5.3) 

1G This process vanishes for the 2~2,. and W:W’: clmnnels. 
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where s is the squared center of mass energy in the vector boson scattering sub- 

system. In this regime, the dominant contribution comes from initial states with 

longitudinally-polarized particles. Our results indicate that the cross-over occurs 

at approximately 400 GeV. Note that the VLVT cross sections for M/+1+‘+ and ZZ 

vanish at O(p’), so they do not satisfy Eq. (5.3). 

As discussed above, the major contribution to the W,‘tvi and IV~ZL final 

states comes from q7j annihilation. In the W,‘W; channel, this is sensitive to 

L!&&). In contrast, the qqcontribution to the W~ZL channel depends on &(p) 

only 1171. The ZLZL and K’:Wt final states do not receive contributions from qq 

annihilation. They probe new physics through vector boson fusion, which depends 

primarily on L;(p) and L;(p). In the ZLZL case, however, the cross section must 

be disentangled from the background from gluon fusion through a top-quark loop. 

In Figs. 9 - 12, we show the total contribution of vector boson scattering to 

VLVL production for the SSC and the LHC. The solid curves were computed with all 

the L:(p) = 0, for 1-1 = 1.5 TeV. The dotted curves correspond to L;(p) = -0.6, 

L;(p) = 0.6, L;,(p) = C&L) = 2.4, and Lie(p) = -2.5, which result from a 

spin-one, isospin-one resonance of mass 1.5 TeV. From the figures we see that the 

differences are very small. Whether or not they can be detected is a question that 

requires a full phenomenological analysis of potential signals, backgrounds and 

cuts, which is far beyond the scope of this paper. In what follows, we will attempt 

to make an initial rough estimate, and leave a more detailed analysis to later work. 

In Fig. 13 we plot the total rate of I^V,+ZL pairs, integrated over the region 

0.5 < Mwz < 1.0 TeV, as a function of LLL(/i) with p = 1.5 TeV. Since t,his 

channel is particularly sensitive to Lb,(p), we have set all the other coefficients 

L:(p) = 0. Assuming that it will be possible to measure the polarization of the 

final state, and defining L;,(p) as being observable if it induces a 50% change in 

t,he integrated cross section, we see that the SSC and LHC will be sensitive ” to 

LjL(p) 2 -3.5 and LiL(fL) X 2.5. If we assume that the polarization measurement 

li The number of events is much larger at the SSC than the LHC, Imwever, so the st~at~isticd 
significance of the results will be larger at the SSC. 
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is not possible, the change in the rate is always less than about 5%. Our results 

are consistent with those of Ref. 17, and indicate that polarization measurements 

will be necessary for the SSC and LHC to place meaningful constraints on t,he 

three-gauge-boson vertices L;,(p) and L&(n). 

In Fig. 14 we plot the total rate of W,‘IVi pairs, integrated over the region 

0.5 < Mwz < 1.0 TeV, as a function of L!&(p) = L&(p) with p = 1.5 TeV. All 

other coefficients have been set to zero. Using the above assumptions, we estimate 

the SSC and LHC will be sensitive to Lj(ft) 5 -4.0 and L;(p) 2 3.0, module the 

question of backgrounds. The results are similar to those of Fig. 13. 

In Fig. 15 we plot the total rate of WAIVE pairs in the range 0.5 < Mrvw < 1.0 

TeV, as a function of L;(p), with L;(p) = 0 and ~1 = 1.5 TeV. The values of L;(p) 

are those that preserve unitarity up to 1 TeV (see Fig. 1). We have set all the other 

coefficients L:(n) = 0. With the previous assumptions, we estimate that the SSC 

and LHC will be sensitive to L;(p) 5 -0.75. A similar figure with L;(n) = -y(p) 

in shown in Fig. 16 The corresponding limits are -4.0 6 L;(p) 2 -1.0 and 

L;(p) 2 0.8. The SSC and LHC will be the first machines to seriously constrain 

the four-gauge-boson vertices L’;(n) and L;(p). 

Of course, we are well aware that searching for new physics by measuring devia- 

tions in absolute rates requires a firm understanding of the uncertainties involved. 

Our estimates are subject to substantial corrections because of detection issues 

that we have ignored. In addition, we have not addressed the dependence of our 

results on the choice of structure functions or on the scale at which the structure 

functions are evaluated. Nevertheless. the calculations presented here provide a 

consistent framework for more detailed phenomenological studies of electroweak 

symmetry breaking. Clearly, more work is required before definitive answers can 

be found. 



6. Summary and Conclusions 

In this paper we computed the cross section for producing longitudinal vec- 

tor boson pairs at hadron colliders. We included all production mechanisms (ex- 

cept 99 - WOWS), and evaluated our amplitudes to next-to-leading order in 

SU(2) x SU(2) chiral perturbation theory. The formalism describes electroweak 

symmetry breaking in terms of five free parameters, and is appropriate for theories 

with no new resonances below the TeV scale. Our results should give a satisfac- 

tory representation of the scattering amplitudes below one TeV. Since they were 

obtained using the equivalence theorem, they are valid only to leading order in the 

electroweak gauge couplings. Our amplitudes contain the leading corrections from 

terms of enhanced electroweak strength. 

In the WfW-, ZZ and W*Z channels, we saw that qij annihilation gives the 

most important contribution to the hadronic cross section. The rate is dominated 

by the transverse modes, whose dependence on new physics is not of enhanced 

electroweak strength. Clearly, if we wish to study the physics of electroweak sym- 

metry breaking, we must isolate the longitudinal final states. Even in this case, 

there is an important model-independent background from gluon fusion through 

heavy quark loops. This provides a major contribution to the W,‘WF and ZLZL 

channels.‘s In contrast, the Iv,‘IV~ channel is particularly clean because it receives 

no contribution from qq annihilation or gluon fusion. 

The sensitivity to new physics is shown in Table 3, where the rows are labelled 

by production mechanism, and the columns by the final state. Since (I annihila- 

tion provides a significant source of longit,udinal pairs in the W;II,‘i and WfZr 

channels, we see that these contributions are sensitive to the parameters L&(~L) 

and &&) in the effective Lagrangian. These parameters describe anomalous 

three-gauge-boson couplings. 

From Table 3 we see that VLVL fusion contributes to all final states. This 

18 To O(p”), the gy + ZLZL and gg -+ ul~rl’~ cross sections are sensitive to auonu&us top 
couplings [50]. In tlie I,i’ziV; channel, the signal is muked hy qv auuiliilatiou. 
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Table 3 

Sensitivity of pp colliders to the physics of electroweak symmetry breaking. 

w,‘w,- ZL ZL WFZL w&w* L L 

GL,i&) 0 qPL(PL) 0 

Li,*(P) Li,2(P) Li,*(P) Li&4 

process is sensitive t,o Li(,d) and L;(p) in the effective Lagrangian. and probes 

anomalous four-gauge-boson couplings. In the EJ’~PV;, ZLZL and 1YrfZ~ chan- 

nels, the VLVL rate must be isolated from the other production mechanisms. In 

t,he IYLflYt channel, however, VLVL fusion gives the most important contribution. 

This process can be used to bound L:(l) and L;(p). 

In this paper we have used chiral perturbation theory to explore the mechanism 

of electroweak symmetry breaking in the absence of light resonances. Clearly, our 

calculations should be extended to include realistic backgrounds, cuts and detector 

simulations. Only then can one determine the full capability of t,he SSC and LHC 

for exploring the physics of electroweak symmetry breaking. 
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APPENDIX A 

In this appendix, we present explicit results for vector boson scattering into 

longitudinal gauge-boson pairs. We work at one-loop order in the high-energy limit, 

and assume that the chiral symmetry group is SU(2) x SU(2), spontaneously bro- 

ken to SU(2). All the relevant amplitudes can be extracted using the relationships 

of sections 3.1 and 3.2. 

I. ~,3(dW92) -+ w+(PbJ- 

Ts(s,t,u) =s’[f+~(Li(~)+~LI(IL)+~)] 

- &[31%(-;) ++log(-$) -ulog(-;))I 

Td(%t,u) = 9’ 
ii+ &WI - 48$--2, [I%(-$) ++;)] 

+ &+(-;) +~(ulog(-~) -t10+;))I 

Tml(s,tl~l) = &2 
1 I 
4s - 1 L;(p) 

+ g & 9 [tdx-;) -tlog(-;)I 

Tm2(s,t,ZI) = & y UP) 

+ 241;Y2t2,2 [vlog(-$) -a++)] 

(‘4.1) 
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II. ~~,+(41)Wq2) - wfbb 

TJS,t,U) = -g2 [ 
1 i+$-- 

( ‘(2Gb) + G(P)) + G(P) 4nw s2 

+A 1-E ( >>I - &[(I - :){h(-;) 
- flog(-& + 3$log(-;)] 

Td(s,t,u) = g2 [ 1 
z + &(W + w] 

- 06::v2s [lo+;) +31%(-g] 

T/(s,t,u) = -g2 1 t 1 
- + 

( 
2t2Li(p) + (U2 + S’)L$(p) 

+ &l ‘:;::(,j +3;,og(-;) 
>I 

+ u(u - s) 
S2 

log -25 ( ‘>I P2 

Tnd(s,Lu) = g2 
u-t 
-y-y- + 

+ 
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T,nz(s,t. u) = g2 $ + &(-G(P) + J%(P)) 

+ ,~2~,Z~,(G(P) + G(P)) 1 
+ 96$v2s[-210+~) -F~log(--g +2;log(-;)] 

(A.21 

III. y3q1Pv(q2) + w+(p)w- 

M=-&( GL(!J) + G,(P) + 2&(p) - ; 
>( 

- &‘” + Y2,cllY 
> 

I 

+ 2% 
( 

$” + UPpa, + sp,p, + tq2,pv 
> 

C.4.3) 

- ; MP,bM%n) 0 
* w+(Pb-) 

IV. I’,+& + w+(p)2 

M=& ( 
GL(PL) + %2(P) +2&(P) + 5 - &” + q2pq1u 

> 

I 

i-2 E 
( 

;a” + TLPdll” + spflp, + tqztlpy 
> 

C.4.4) 

- 
0 

; M(~li,+(m)K%d + w+(Pb) 

v. rqql)Bv(q2) - 4p)z 

M =2&(-;,v+qwnv) 

- 

0 
$ MW;bnW’%d + dP)Z) 

(A.5) 

We have checked t,hat the photon amplitudes, yq + ZL’+W-, -i-t -+ zz and 
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“1/+-f + .(u+z are all gauge invariant.lg 
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FIGURE CAPTIONS 

1) Values of L;(p) and L;(p) at p = 1.5 TeV allowed by the unitarity constraints 

described in the text. The solid (dashed) line is the boundary of the allowed 

region when one requires the partial waves with J 5 2 to satisfy IRe(a:)l i 

l/2 for :\Jv\J 5 1.0 TeV (M”” 2 1.5 TeV). 

2) Counting rules for the production of VLVL pairs through vector boson fusion: 

a) Tree-level O(p’) diagrams; 1~) Tree-level 0(p4) diagrams. The dashed 

lines represent longitudinally-polarized gauge bosons; the wavy lines denote 

their transversly polarized partners. The heavy dots represent vertices from 

Eq. (2.5), and the scale .4 5 4x7~. 

3) One-loop 0(p4) diagrams from Eq. (2.4) that contribute to VLVL pair pro- 

duction via vector boson fusion. The terms of enhanced electrowealr strcugtll 

are those with Goldstone bosons in the loop. 

4) Counting rules for the production of V,l’, pairs through @? annihilation: a) 

Tree and one-loop amplitudes from Eq. (2.4). The diagrams with Goldstone 
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bosons in the loop are enhanced at high energies; b) Tree-level terms from 

Eq. (2.5); c) Possible new physics contributions that are not included. The 

first are oblique corrections that are not of enhanced electroweak strength. 

The second are nonstandard fermion couplings that are excluded by assump- 

tion. 

5) d~/dMww for pp -+ W,‘Wi at &? = 40 TeV. The amplitudes include only 

the universal contributions at order p 4, that is, we have set L:(p) = 0 at /I = 

1.5 TeV. The long-dashed line is the contribution from qtj annihilation. The 

solid, dotted, and dashed lines are t~he contributions from VLVL, VLVT, and 

VTVT initial states, respectively. The dot-dashed line is the total contribution 

from vector boson scattering. The vector boson curves include both the 

W,‘W; and ZLZL initial states. 

6) du/dMzz for pp + ZLZL at fi = 40 TeV. The amplitudes include only 

the universal contributions at order p”, that is, we have set L:(p) = 0 at 

p = 1.5 TeV. The long-dashed line is the contribution from yg scattering 

through a top quark loop with M top = 200 GeV. The solid and dashed lines 

are the contributions from VLVL and VTVT initial states, respectively. The 

dot-dashed line is the total contribution from vector boson scattering. The 

vector boson curves include both the 1’1/Lfl+‘; and ZLZL initial states. 

7) da/dMwz for pp + WzZr. at fi = 40 TeV. The amplitudes include only 

the universal contributions at order p ‘, that is, we have set L:(l) = 0 at p = 

1.5 TeV. The long-dashed line is the contribution from qq annihilat~ion. The 

solid, dotted, and dashed lines are the contributions from VLVL, VLVT, and 

l+V~ initial states, respectively. The dot-dashed line is the total contribution 

from vector boson scattering. 

8) du/dMww for pp + WzWz at fi = 40 TeV. The amplitudes include 

only the universal contribut,ions at order p ‘, that is, we have set L;(h) = 0 a,t 

~1 = 1.5 TeV. The solid and dashed lines are the contributions from VL\/, and 

L’TVT initial states, respectively. The dot-dashed line is the t,otal contribution 

from vector boson scattering. 

33 



9) The total vector boson scattering contribution to dg/dMivrv for pp + Ilfz&. 

The upper curves have fi = 40 TeV, while the lower curves have fi = 17 

TeV. The solid curves have all L:(p) = 0 and the dotted curves have L;(p) = 

-0.6, L;(p) = 0.6, GjL(p) = L&(p) = 2.4, and L~s(~L) = -2.5, at p = 1.5 

TeV. 

10) The total vector boson scattering contribution to da/dMzz for pp + ZLZ~, 

The upper curves have fl = 40 TeV and the lower curves have fi = 17 

TeV. The solid curves have all L:(p) = 0 and the dotted curves have L;(p) = 

-0.6, L;(p) = 0.6, L;,(b) = L&(p) = 2.4, and Lfo(p) = -2.5, at p = 1.5 

TeV. 

11) The total vector boson scattering contribution to du/dM\vz forpp + WLfZL. 

The upper curves have fi = 40 TeV and the lower curves have &? = 17 

TeV. The solid curves have all L:(p) = 0 and the dotted curves have L,i(p) = 

-0.6, L;(p) = 0.6, LgL(p) = Lb,(p) = 2.4, and Lie(h) = -2.5, at ~1 = 1.5 

TeV. 

12) The total vector boson scattering contribution to du/dMww forpp -t PV~W’~. 

The upper curves have v’?? = 40 TeV and the lower curves have fi = 17 

TeV. The solid curves have all LF(br) = 0 and the dotted curves have L;(p) = 

-0.6, L;(p) = 0.6, LGL(p) = LiR(p) = 2.4, and Lit(p) = -2.5, at p = 1.5 

TeV. 

13) The number of W~ZL events per year with 0.5 < Mt.vz < 1.0 TeV, a.3 a 

function of LcL(p) with p = 1.5 TeV, assuming an integrated luminosity of 

104’ cm-* at the SSC (solid line) and LHC (dotted line). With no anomalous 

couplings, the total number of WfZ events per year is expected to be 88,500 

at the SSC and 34,400 at the LHC. Of these, the number of W~ZL events 

is about 10,000 for the SSC and 4,000 for t,he LHC. 

14) The number of W,‘WF events per year with 0.5 < AJbrqv < 1.0 TeV. as a 

function of LGL(kt) = L&(/L) with ~1 = 1.5 TeV, assuming an integrated lumi- 

nosity of 10”’ cm-* at the SSC (solid line) and LHC (dotted line). Wit,h no 
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anomalous couplings, the total number of W+Z events per year is expected 

to be 174,000 at the SSC and 60,000 at the LHC. 

15) The number of W~PV~ events per year with 0.5 < A4wrr1 < 1.0 TeV, as a 

function of L:(p), with L;(p) = 0 and p = 1.5 TeV, assuming an integrated 

luminosity of 10” cm-’ at the SSC (solid line) and LHC (dotted line). The 

values of L;(p) preserve unitarity up to 1.0 TeV. 

16) The number of W$$ events per year with 0.5 < Mww < 1.0 TeV, as a 

function of L;(p), with L;(p) = -4(p) = 0 and p = 1.5 TeV, assuming an 

integrated luminosity of 104’ cme2 at the SSC (solid line) and LHC (dotted 

line). The values of L;(p) preserve unitarity up to 1.0 TeV. 
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